Jakafi is a kinase inhibitor indicated for treatment of:
- intermediate or high-risk myelofibrosis, including primary myelofibrosis, post-polycthemia vera myelofibrosis and post-essential thrombocythemia myelofibrosis in adults (1.1)
- polycythemia vera in adults who have had an inadequate response to or are intolerant of hydroxyurea. (1.2)
- steroid-refractory acute graft-versus-host disease in adult and pediatric patients 12 years and older (1.3)

Doses should be individualized based on safety and efficacy. Starting doses per indication are noted below.

Myelofibrosis (2.1)
- The starting dose of Jakafi is based on patient’s baseline platelet count:
 - Greater than 200 × 10^9/L: 20 mg given orally twice daily
 - 100 × 10^9/L to 200 × 10^9/L: 15 mg given orally twice daily
 - 50 × 10^9/L to less than 100 × 10^9/L: 5 mg given orally twice daily
- Monitor complete blood counts every 2 to 4 weeks until doses are stabilized, and then as clinically indicated. Modify or interrupt dosing for thrombocytopenia.
- Acute Graft Versus Host Disease (2.2)
- The starting dose of Jakafi is 10 mg given orally twice daily.
- Myelofibrosis: Maximum Restarting Doses for Jakafi after Safety Interruption (2.3)
 - The starting dose of Jakafi is 5 mg given orally twice daily.

WARNINGS AND PRECAUTIONS

- Thrombocytopenia, Anemia and Neutropenia: Manage by dose reduction, or interruption, or transfusion. (5.1)
- Risk of Infection: Assess patients for signs and symptoms of infection and initiate appropriate treatment promptly. Serious infections should have resolved before starting therapy with Jakafi. (5.2)
- Symptom Exacerbation Following Interruption or Discontinuation: Manage with supportive care and consider resuming treatment with Jakafi. (5.3)
- Risk of Non-Melanoma Skin Cancer: Perform periodic skin examinations. (5.4)
- Lipid Elevations: Assess lipid levels 8-12 weeks from start of therapy and treat as needed. (5.5)

ADVERSE REACTIONS

- In myelofibrosis and polycythemia vera, the most common hematologic adverse reactions (incidence > 20%) are thrombocytopenia and anemia. The most common nonhematologic adverse reactions (incidence >10%) are bruising, dizziness, and headache. (6.1)
- In acute graft versus host disease, the most common hematologic adverse reactions (incidence > 50%) are anemia, thrombocytopenia, and neutropenia. The most common nonhematologic adverse reactions (incidence > 50%) are infections and edema. (6.3)

To report SUSPECTED ADVERSE REACTIONS, contact Incyte Corporation at 1-855-463-3463 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

DRUG INTERACTIONS

- Strong CYP3A4 Inhibitors or Fluconazole: Reduce, interrupt, or discontinue Jakafi doses as recommended. Avoid use of Jakafi with fluconazole doses greater than 200 mg except in patients with acute graft-versus-host disease. (2.4, 7)

See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.

Revised: 05/2019
Following treatment interruption for ANC below 0.5 × 10^9/L, after ANC recovers to 0.75 × 10^9/L or greater, restart dosing at the higher of 5 mg once daily or 5 mg twice daily below the largest dose in the prior week to the treatment interruption.

Dose Reductions

Dose reductions should be considered if the platelet counts decrease as outlined in Table 3 with the goal of avoiding dose interruptions for thrombocytopenia.

Table 3: Myelofibrosis: Dosing Recommendations for Thrombocytopenia for Patients Starting Treatment with a Platelet Count of 100 × 10^9/L or Greater

<table>
<thead>
<tr>
<th>Platelet Count</th>
<th>Dose at Time of Platelet Decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mg twice daily</td>
<td>New Dose</td>
</tr>
<tr>
<td>100 to less than 125 × 10^9/L</td>
<td>20 mg twice daily</td>
</tr>
<tr>
<td>75 to less than 100 × 10^9/L</td>
<td>10 mg twice daily</td>
</tr>
<tr>
<td>50 to less than 75 × 10^9/L</td>
<td>5 mg twice daily</td>
</tr>
<tr>
<td>Less than 50 × 10^9/L</td>
<td>Hold</td>
</tr>
</tbody>
</table>

Dose Modification Based on Insufficient Response for Patients with Myelofibrosis Starting Treatment with a Platelet Count of 100 × 10^9/L or Greater

If the response is insufficient and platelet and neutrophil counts are adequate, doses may be increased in 5 mg twice daily increments to a maximum of 25 mg twice daily. Doses should not be increased during the first 4 weeks of therapy and not more frequently than every 2 weeks.

Consider dose increases in patients who meet all of the following conditions:

- Failure to achieve a reduction from pretreatment baseline in either palpable spleen length of 50% or a 35% reduction in spleen volume as measured by computed tomography (CT) or magnetic resonance imaging (MRI);
- Platelet count greater than 125 × 10^9/L at 4 weeks and platelet count never below 100 × 10^9/L;
- ANC Levels greater than 0.75 × 10^9/L.

Based on limited clinical data, long-term maintenance at a 5 mg twice daily dose has not shown responses and continued use at this dose should be limited to patients in whom the benefits outweigh the potential risks. Discontinue Jakafi if there is no spleen size reduction or symptom improvement after 6 months of therapy.

Dose Modifications for Hematologic Toxicity for Patients with Myelofibrosis Starting Treatment with Platelet Counts of 50 × 10^9/L to Less Than 100 × 10^9/L

This section applies only to patients with platelet counts of 50 × 10^9/L or less at any time during treatment.

<table>
<thead>
<tr>
<th>Platelet Count</th>
<th>Dosing Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mg twice daily</td>
<td>New Dose</td>
</tr>
<tr>
<td>20 mg twice daily</td>
<td>New Dose</td>
</tr>
<tr>
<td>15 mg twice daily</td>
<td>New Dose</td>
</tr>
<tr>
<td>10 mg twice daily</td>
<td>New Dose</td>
</tr>
<tr>
<td>5 mg twice daily</td>
<td>New Dose</td>
</tr>
</tbody>
</table>

Dose Modifications Based on Insufficient Response for Patients with Myelofibrosis and Starting Platelet Count of 50 × 10^9/L to Less Than 100 × 10^9/L

If the response is insufficient as defined in Section 2.1 (see Dose Modification Based on Insufficient Response with Myelofibrosis Starting Treatment with a platelet count of 100 × 10^9/L or Greater), doses may be increased by increments of 5 mg/day to a maximum of 10 mg twice daily if:

- The platelet count has remained at least 40 × 10^9/L,
- The platelet count has not fallen by more than 20% in the prior 4 weeks,
- The ANC is greater than 1 × 10^9/L, and
- The dose has not been reduced or interrupted for an adverse event or hematological toxicity in the prior 4 weeks.

Continuation of treatment for more than 6 months should be limited to patients in whom the benefits outweigh the potential risks. Discontinue Jakafi if there is no spleen size reduction or symptom improvement after 6 months of therapy.

Dose Modification for Bleeding

Interrupt treatment for bleeding requiring intervention regardless of current platelet count. Once the bleeding event has resolved, consider resuming treatment at the prior dose if the underlying cause of bleeding has been controlled. If the bleeding event has resolved but the underlying cause persists, consider resuming treatment with Jakafi at a lower dose.

2.2 Polycythemia Vera

The recommended starting dose of Jakafi is 10 mg twice daily. Doses may be titrated based on safety and efficacy.

Dose Modification Guidelines for Patients with Polycythemia Vera

A complete blood count (CBC) and platelet count must be performed before initiating therapy, every 2 to 4 weeks until doses are stabilized, and then as clinically indicated [see Warnings and Precautions (5.1)].

Dose Reductions

Dose reductions should be considered for hemoglobin and platelet count decreases as described in Table 5.

Table 5: Polycythemia Vera: Dosing Reductions

<table>
<thead>
<tr>
<th>Hemoglobin and/or Platelet Count</th>
<th>Dosing Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin greater than or equal to 12 g/dL AND platelet count greater than or equal to 100 × 10^9/L</td>
<td>• No change required.</td>
</tr>
<tr>
<td>Hemoglobin 10 to less than 12 g/dL AND platelet count 75 to less than 100 × 10^9/L</td>
<td>• Dose reductions should be considered with the goal of avoiding dose interruptions for anemia and thrombocytopenia.</td>
</tr>
<tr>
<td>Hemoglobin 8 to less than 10 g/dL OR platelet count 50 to less than 75 × 10^9/L</td>
<td>• Reduce dose by 5 mg twice daily.</td>
</tr>
<tr>
<td>Hemoglobin less than 8 g/dL OR platelet count less than 50 × 10^9/L</td>
<td>• Interrupt dosing.</td>
</tr>
</tbody>
</table>

Treatment Interruption and Restarting Dosing

Interrupt treatment for hemoglobin less than 8 g/dL, platelet counts less than 50 × 10^9/L or greater than 10 × 10^9/L. After recovery of the hematologic parameter(s) to acceptable levels, dosing may be restarted.

Table 6: Polycythemia Vera: Restarting Doses for Jakafi after Safety Interruption for Hematologic Parameter(s)

<table>
<thead>
<tr>
<th>Hemoglobin, Platelet Count, or ANC</th>
<th>Maximum Restarting Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin less than 8 g/dL OR platelet count less than 50 × 10^9/L OR ANC less than 1 × 10^9/L</td>
<td>Continue hold</td>
</tr>
<tr>
<td>Hemoglobin 8 to less than 10 g/dL OR platelet count 50 to less than 75 × 10^9/L OR ANC 1 to less than 1.5 × 10^9/L</td>
<td>5 mg twice daily or no more than 5 mg twice daily less than the dose which resulted in dose interruption</td>
</tr>
<tr>
<td>Hemoglobin 10 to less than 12 g/dL OR platelet count 75 to less than 100 × 10^9/L OR ANC 1.5 to less than 2 × 10^9/L</td>
<td>10 mg twice daily or no more than 5 mg twice daily less than the dose which resulted in dose interruption</td>
</tr>
<tr>
<td>Hemoglobin greater than or equal to 12 g/dL OR platelet count greater than or equal to 100 × 10^9/L OR ANC greater than or equal to 2 × 10^9/L</td>
<td>15 mg twice daily or no more than 5 mg twice daily less than the dose which resulted in dose interruption</td>
</tr>
</tbody>
</table>

* Continue treatment for at least 2 weeks; if stable, may increase dose by 5 mg twice daily.

Patients who had required dose interruption while receiving a dose of 5 mg twice daily, may restart at a dose of 5 mg twice daily or 5 mg once daily, but not higher, once hemoglobin is greater than or equal to 10 g/dL, platelet count is greater than or equal to 75 × 10^9/L, and ANC is greater than or equal to 1.5 × 10^9/L.

Dose Management after Restarting Treatment

After restarting Jakafi following treatment interruption, doses may be titrated, but the maximum total daily dose should not exceed 5 mg less than the dose that resulted in the dose interruption. An exception to this is dose interruption following phlebotomy-associated anemia, in which case the maximum total daily dose allowed after restarting Jakafi would not be limited.

Dose Modifications Based on Insufficient Response for Patients with Polycythemia Vera

If the response is insufficient and platelet, hemoglobin, and neutrophil counts are adequate, doses may be increased in 5 mg twice daily increments to a maximum of 25 mg twice daily. Doses should not be increased during the first 4 weeks of therapy and not more frequently than every 2 weeks.

Consider dose increases in patients who meet all of the following conditions:

- 1. Inadequate efficacy as demonstrated by one or more of the following:
 - Continued need for phlebotomy
 - BWC greater than the upper limit of normal range
 - Platelet count greater than the upper limit of normal range
 - Palpable spleen that is reduced by less than 25% from Baseline
 - Platelet count greater than or equal to 140 × 10^9/L
 - Hemoglobin greater than or equal to 12 g/dL
 - ANC greater than or equal to 1.5 × 10^9/L

If the response is insufficient and platelet, hemoglobin, and neutrophil counts are adequate, doses may be increased in 5 mg twice daily increments to a maximum of 25 mg twice daily. Doses should not be increased during the first 4 weeks of therapy and not more frequently than every 2 weeks.

Consider dose increases in patients who meet all of the following conditions:
2.3 Acute Graft Versus Host Disease
The recommended starting dose of Jakafi is 5 mg given orally twice daily. Consider increasing the dose to 10 mg twice daily after at least 3 days of treatment if the ANC and platelet counts are not decreased by 50% or more relative to the first day of dosing with Jakafi. Tapering of Jakafi may be considered after 6 months of treatment in patients with response who have discontinued therapeutic doses of corticosteroids. Taper Jakafi by one dose level every 8 weeks (10 mg twice daily to 5 mg twice daily to 5 mg once daily). If acute GVHD signs or symptoms recur during or after the taper of Jakafi, consider retreatment.

Dose Modification Guidelines for Patients with Acute Graft Versus Host Disease
Evaluate blood parameters before and during treatment with Jakafi. Dose reductions should be considered for platelet counts, ANCs, or bilirubin as described in Table 7. Patients who are currently receiving Jakafi 10 mg twice daily may have their dose reduced to 5 mg twice daily; patients receiving 5 mg twice daily may have their dose reduced to 5 mg once daily. Patients who are unable to tolerate Jakafi at a dose of 5 mg once daily should have treatment interrupted until their clinical and/or laboratory parameters recover.

Table 7: Dose Modifications for Patients with Acute GVHD

<table>
<thead>
<tr>
<th>Laboratory Parameter</th>
<th>Dosing Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically significant thrombocytopenia after supportive measures</td>
<td>Reduce dose by 1 dose level. When platelets recover to previous values, dosing may return to prior dose level.</td>
</tr>
<tr>
<td>ANC less than 1 × 10^9/L considered related to Jakafi</td>
<td>Hold Jakafi for up to 14 days; resume at 1 dose level lower upon recovery.</td>
</tr>
</tbody>
</table>

Total Bilirubin elevation, no liver GVHD
- 3.0–5.0 × ULN: Continue Jakafi at a dose level lower until recovery.
- >5.0–10.0 × ULN: Hold Jakafi for up to 14 days until bilirubin ≤ 1.5 × ULN; resume at current dose upon recovery.
- Total bilirubin > 10.0 × ULN: Hold Jakafi for up to 14 days until bilirubin ≤ 1.5 × ULN; resume at 1 dose level lower upon recovery.

Total Bilirubin elevation, liver GVHD
- >3.0 × ULN: Continue Jakafi at 1 dose level lower until recovery.

2.4 Dose Modifications for Concomitant Use with Strong CYP3A4 Inhibitors or Fluconazole
Modify the Jakafi dosage when coadministered with strong CYP3A4 inhibitors and fluconazole doses of less than or equal to 200 mg daily (see Drug Interactions (7)), according to Table 8. Additional dose modifications should be made with frequent monitoring of safety and efficacy.

Avoid the use of fluconazole doses of greater than 200 mg daily with Jakafi except in patients with acute GVHD.

Table 8: Dose Modifications for Concomitant Use with Strong CYP3A4 Inhibitors or Fluconazole

For patients coadministered strong CYP3A4 inhibitors or fluconazole doses of less than or equal to 200 mg

<table>
<thead>
<tr>
<th>Recommended Dose Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting dose for patients with MF with a platelet count:</td>
</tr>
<tr>
<td>• Greater than or equal to 100 × 10^9/L</td>
</tr>
<tr>
<td>• 50 to less than 100 × 10^9/L</td>
</tr>
<tr>
<td>Starting dose for patients with PV:</td>
</tr>
<tr>
<td>• Greater than or equal to 10 mg twice daily</td>
</tr>
<tr>
<td>• 5 mg twice daily</td>
</tr>
<tr>
<td>• 5 mg once daily</td>
</tr>
</tbody>
</table>

For patients with acute GVHD:
- Ketoconazole | 5 mg once daily |
- Other CYP3A4 inhibitors* | No dose adjustment |

*With coadministration of fluconazole, monitor blood counts more frequently for toxicity and adjust the dose of Jakafi if necessary.

2.5 Method of Administration
Jakafi is dosed orally and can be administered with or without food.

If a dose is missed, the patient should not take an additional dose, but should take the next usual prescribed dose.

When discontinuing Jakafi therapy for reasons other than thrombocytopenia, gradual tapering of the dose of Jakafi may be considered, for example by 5 mg twice daily each week.

For patients unable to ingest tablets, Jakafi can be administered through a nasogastric tube (8 French or greater) as follows:
- Suspend one tablet in approximately 40 mL of water with stirring for approximately 10 minutes.
- Within 6 hours after the tablet has dispersed, the suspension can be administered through a nasogastric tube using an appropriate syringe.

The tube should be rinsed with approximately 75 mL of water. The effect of tube feeding preparations on Jakafi exposure during administration through a nasogastric tube has not been evaluated.

3. DOSAGE FORMS AND STRENGTHS
5 mg tablets - round and white with “INCY” on one side and “5” on the other.
10 mg tablets - round and white with “INCY” on one side and “10” on the other.
15 mg tablets - oval and white with “INCY” on one side and “15” on the other.
20 mg tablets - capsule-shaped and white with “INCY” on one side and “20” on the other.
25 mg tablets - oval and white with “INCY” on one side and “25” on the other.

4. CONTRAINDICATIONS
None.

5. WARNINGS AND PRECAUTIONS

5.1 Thrombocytopenia, Anemia, and Neutropenia
Treatment with Jakafi can cause thrombocytopenia, anemia, and neutropenia. [See Dosage and Administration (2.1)].

Manage thrombocytopenia by reducing the dose or temporarily interrupting Jakafi. Platelet transfusions may be necessary [see Dosage and Administration (2), and Adverse Reactions (6.1)].

Patients developing anemia may require blood transfusions and/or dose modifications of Jakafi.

Severe neutropenia (ANC less than 0.5 × 10^9/L) was generally reversible by withholding Jakafi until recovery [see Adverse Reactions (6.1)].
5.2 Risk of Infection
Serious bacterial, mycobacterial, fungal and viral infections have occurred. Delay starting therapy with Jakafi until active serious infections have resolved. Observe patients receiving Jakafi for signs and symptoms of infection and manage promptly. Use active surveillance and prophylactic antibiotics according to clinical guidelines.

Tuberculosis
Tuberculosis infection has been reported in patients receiving Jakafi. Observe patients receiving Jakafi for signs and symptoms of active tuberculosis and manage promptly.

Prior to initiating Jakafi, patients should be evaluated for tuberculosis risk factors, and those at higher risk should be tested for latent infection. Risk factors include but are not limited to, prior residence in or travel to countries with a high prevalence of tuberculosis, close contact with a person with active tuberculosis, and a history of active or latent tuberculosis where an adequate course of treatment cannot be confirmed.

For patients with evidence of active or latent tuberculosis, consult a physician with expertise in the treatment of tuberculosis before starting Jakafi. The decision to continue Jakafi during treatment of active tuberculosis should be based on the overall risk-benefit determination.

Progressive Multifocal Leuкоencephalopathy
Progressive multifocal leukoencephalopathy (PML) has occurred with Jakafi treatment. If PML is suspected, stop Jakafi and evaluate.

Herpes Zoster
Advise patients about early signs and symptoms of herpes zoster and to seek treatment as early as possible if suspected [see Adverse Reactions (6.1)].

Hepatitis B
Hepatitis B viral load (HBV-DNA titer) increases, with or without associated elevations in alanine aminotransferase and aspartate aminotransferase, have been reported in patients with chronic HBV infections taking Jakafi. The effect of Jakafi on viral replication in patients with chronic HBV infection is unknown. Patients with chronic HBV infection should be treated and monitored according to clinical guidelines.

5.3 Symptom Exacerbation Following Interruption or Discontinuation of Treatment with Jakafi
Following discontinuation of Jakafi, symptoms from myeloproliferative neoplasms may return to pretreatment levels over a period of approximately one week. Some patients with MF have experienced one or more of the following adverse events after discontinuing Jakafi fever respiratory distress, hypotension, DIC, or multi-organ failure. If one or more of these occur after discontinuation of, or while tapering the dose of Jakafi, evaluate for and treat any intervening illness and consider restarting or increasing the dose of Jakafi. Instruct patients not to interrupt or discontinue Jakafi therapy without consulting their physician. When discontinuing or interrupting therapy with Jakafi for reasons other than thrombocytopenia or neutropenia [see Dosage and Administration (2.6)], consider tapering the dose of Jakafi gradually rather than discontinuing abruptly.

5.4 Non-Melanoma Skin Cancer
Non-melanoma skin cancers including basal cell, squamous cell, and Merkel cell carcinoma have occurred in patients treated with Jakafi. Perform periodic skin examinations.

5.5 Lipid Elevations
Treatment with Jakafi has been associated with increases in lipid parameters including total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides. The effect of these lipid parameter elevations on cardiovascular morbidity and mortality has not been determined in patients treated with Jakafi. Assess lipid parameters approximately 8–12 weeks following initiation of Jakafi therapy. Monitor and treat according to clinical guidelines for the management of hyperlipidemia.

6 ADVERSE REACTIONS
The following clinically significant adverse reactions are discussed in greater detail in other sections of the labeling:

- Thrombocytoxinaemia, Anemia and Neutropenia [see Warnings and Precautions (5.1)]
- Risk of Infection [see Warnings and Precautions (5.2)]
- Symptom Exacerbation Following Interruption or Discontinuation of Treatment with Jakafi [see Warnings and Precautions (5.3)]
- Non-Melanoma Skin Cancer [see Warnings and Precautions (5.4)]

6.1 Clinical Trials Experience in Myelofibrosis
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

The safety of Jakafi was assessed in 617 patients in six clinical studies with a median duration of follow-up of 10.9 months, including 301 patients with MF in two Phase 3 studies. In these two Phase 3 studies, patients had a median duration of exposure to Jakafi of 9.5 months (range 0.5 to 17 months), with 89% of patients treated for more than 6 months and 25% treated for more than 12 months. One hundred and eleven (111) patients started treatment at 15 mg twice daily and 190 patients started at 20 mg twice daily. In patients starting treatment with 15 mg twice daily (pretreatment platelet counts of 100 to 200 × 10^9/L) and 20 mg twice daily (pretreatment platelet counts greater than 200 × 10^9/L), 65% and 25% of patients, respectively, required a dose reduction below the starting dose within the first 8 weeks of therapy.

In a double-blind, randomized, placebo-controlled study of Jakafi, among the 155 patients treated with Jakafi, the most frequent adverse reactions were thrombocytoxinaemia and anemia [see Table 12]. Thrombocytoxinaemia, anemia and neutropenia are dose-related effects. The three most frequent nonhematologic adverse reactions were bruising, dizziness and headache [see Table 17]. Discontinuation for adverse reactions, regardless of causality, was observed in 11% of patients treated with Jakafi and 11% of patients treated with placebo.

Table 11: Myelofibrosis: Adverse Reactions Occurring in Patients on Jakafi in the Double-blind, Placebo-controlled Study During Randomized Treatment

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>Jakafi (N=155)</th>
<th>Placebo (N=151)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1 (%)</td>
<td>Grade 2 (%)</td>
<td>Grade 3 (%)</td>
</tr>
<tr>
<td>Grade 4 (%)</td>
<td>Grade 1 (%)</td>
<td>Grade 2 (%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>Grade 3 (%)</th>
<th>Grade 4 (%)</th>
<th>Grade 3 (%)</th>
<th>Grade 4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruising</td>
<td>23</td>
<td><1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Dizziness</td>
<td>18</td>
<td><1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Headache</td>
<td>15</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Uinary Tract Infections</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td><1</td>
</tr>
<tr>
<td>Weight Gain</td>
<td>7</td>
<td><1</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Fatigue</td>
<td>5</td>
<td>0</td>
<td><1</td>
<td>0</td>
</tr>
<tr>
<td>Herpes Zoster</td>
<td>2</td>
<td>0</td>
<td><1</td>
<td>0</td>
</tr>
</tbody>
</table>

*National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 3.0

Additional Data from the Placebo-Controlled Study

- 25% of patients treated with Jakafi and 7% of patients treated with placebo developed newly occurring or worsening Grade 1 abnormalities in aspartate transaminase (AST). The incidence of greater than or equal to Grade 2 elevations was 2% for Jakafi with 1% Grade 3 and no Grade 4 AST elevations.
- 17% of patients treated with Jakafi and 6% of patients treated with placebo developed newly occurring or worsening Grade 1 abnormalities in alanine transaminase (ALT). The incidence of greater than or equal to Grade 2 elevations was 2% for Jakafi with 1% Grade 3 and no Grade 4 ALT elevations.
- 17% of patients treated with Jakafi and 1% of patients treated with placebo developed newly occurring or worsening Grade 1 elevations in cholesterol. The incidence of Grade 2 cholesterol elevations was <1% for Jakafi with no Grade 3 or 4 cholesterol elevations.

6.2 Clinical Trial Experience in Polycythemia Vera

In a randomized, open-label, active-controlled study, 110 patients with PV resistant to or intolerant of hydroxyurea received Jakafi and 111 patients received best available therapy [see Clinical Studies (14.1)]. The most frequent adverse drug reaction was anemia. Discontinuation for adverse events, regardless of causality, was observed in 4% of patients treated with Jakafi. Table 13 presents the most frequent nonhematologic treatment emergent adverse events occurring up to Week 32.
Table 13: Polycythemia Vera: Treatment Emergent Adverse Events Occurring in ≥ 6% of Patients on Jakafi in the Open-Label, Active-controlled Study up to Week 32 of Randomized Treatment

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Jakafi (N=110)</th>
<th>Best Available Therapy (N=111)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades (%)</td>
<td>Grade 3-4 (%)</td>
</tr>
<tr>
<td>Headache</td>
<td>16</td>
<td><1</td>
</tr>
<tr>
<td>Abdominal Pain†</td>
<td>15</td>
<td><1</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Dizziness‡</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Pruritus</td>
<td>14</td>
<td><1</td>
</tr>
<tr>
<td>Dyspnea§</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Muscle Spasms</td>
<td>12</td>
<td><1</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Constipation</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Cough</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Edema†</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Asthma</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Herpes Zoster§</td>
<td>6</td>
<td><1</td>
</tr>
<tr>
<td>Nausea</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

*National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 3.0
†Includes abdominal pain, abdominal pain lower, and abdominal pain upper
‡Includes dizziness and vertigo
§Includes dyspnea and dyspnea exertional
¶Includes edema and peripheral edema
‖Includes herpes zoster and post-herpetic neuralgia

Table 14: Polycythemia Vera: Selected Laboratory Abnormalities in the Open-Label, Active-controlled Study up to Week 32 of Randomized Treatment

Other clinically important treatment emergent adverse reactions observed in less than 6% of patients treated with Jakafi were:
- Weight gain
- Hypertension
- Urinary tract infections

Clinically relevant laboratory abnormalities are shown in Table 14.

Table 15: Acute Graft Versus Host Disease: Nonhematological Adverse Reactions Occurring in ≥ 15% of Patients in the Open-Label, Single-Cohort Study

<table>
<thead>
<tr>
<th>Adverse Reactions*</th>
<th>All Grades (%)</th>
<th>Grade 3-4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections</td>
<td>55</td>
<td>41</td>
</tr>
<tr>
<td>Edema</td>
<td>51</td>
<td>13</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>49</td>
<td>20</td>
</tr>
<tr>
<td>Fatigue</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td>Bacterial infections</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>32</td>
<td>7</td>
</tr>
<tr>
<td>Viral infections</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>Rash</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>Headache</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>Hypertension</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Dizziness</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

* Selected laboratory abnormalities are listed in Table 16 below

Table 16: Acute Graft Versus Host Disease: Selected Laboratory Abnormalities Worsening from Baseline in the Open-Label, Single Cohort Study

<table>
<thead>
<tr>
<th>Laboratory Parameter</th>
<th>Jakafi (N=71)</th>
<th>Worst grade during treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades (%)</td>
<td>Grade 3-4 (%)</td>
</tr>
<tr>
<td>Hematology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>75</td>
<td>45</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>75</td>
<td>61</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>58</td>
<td>40</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevated ALT</td>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>Elevated AST</td>
<td>46</td>
<td>6</td>
</tr>
<tr>
<td>Hypertriglyceridemia</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

*National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.03

7 Drug Interactions

Fluconazole
Concomitant administration of Jakafi with fluconazole doses greater than 200 mg daily may increase ruxolitinib exposure due to inhibition of both the CYP3A4 and CYP2C9 metabolic pathways [see Clinical Pharmacology (12.3)]. Increased exposure may increase the risk of exposure-related adverse reactions. Avoid the concomitant use of Jakafi with fluconazole doses of greater than 200 mg daily except in patients with acute GVHD [see Dosage and Administration (2.4)].

Strong CYP3A4 inhibitors
Concomitant administration of Jakafi with strong CYP3A4 inhibitors increases ruxolitinib exposure [see Clinical Pharmacology (12.3)]. Increased exposure may increase the risk of exposure-related adverse reactions. Consider dose reduction when administering Jakafi with strong CYP3A4 inhibitors [see Dosage and Administration (2.4)]. In patients with acute GVHD, reduce Jakafi dose as recommended only when coadministered with ketoconazole, and monitor blood counts more frequently for toxicity and adjust the dose if necessary when coadministered with itraconazole. [see Dosage and Administration (2.4)].

Strong CYP3A4 inducers
Concomitant administration of Jakafi with strong CYP3A4 inducers may decrease ruxolitinib exposure [see Clinical Pharmacology (12.3)]. No dose adjustment is recommended; however, monitor patients frequently and adjust the Jakafi dose based on safety and efficacy [see Clinical Pharmacology (12.3)].

8 Use in Specific Populations

8.1 Pregnancy

Risk Summary
When pregnant rats and rabbits were administered ruxolitinib during the period of organogenesis adverse developmental outcomes occurred at doses associated with maternal toxicity [see Data]. There are no studies with the use of Jakafi in pregnant women to inform drug-associated risks.

The background risk of major birth defects and miscarriage for the indicated populations is 2% to 4% and 15% to 20% of clinically recognized pregnancies.
Data
Animal Data
Ruxolitinib was administered orally to pregnant rats or rabbits during the period of organogenesis, at doses of 15, 30 or 60 mg/kg/day in rats and 10, 30 or 60 mg/kg/day in rabbits. There were no treatment-related malformations. Adverse developmental outcomes, such as decreases of approximately 9% in fetal weights were noted in rats at the highest and maternally toxic dose of 60 mg/kg/day. This dose results in an exposure (AUC) that is approximately 2 times the clinical exposure at the maximum recommended dose of 25 mg twice daily. In rabbits, lower fetal weights of approximately 8% and increased late resorptions were noted at the highest and maternally toxic dose of 60 mg/kg/day. This dose is approximately 7% the clinical exposure at the maximum recommended dose.

In a pre- and post-natal development study in rats, pregnant animals were dosed with ruxolitinib from implantation through lactation at doses up to 30 mg/kg/day. There were no drug-related adverse findings in pups for fertility indices or for maternal or embryofetal survival, growth and development parameters at the highest dose evaluated (34X the clinical exposure at the maximum recommended dose of 25 mg twice daily).

8.2 Lactation
Risk Summary
No data are available regarding the presence of ruxolitinib in human milk, the effects on the breast fed child, or the effects on milk production. Ruxolitinib and/or its metabolites were present in the milk of lactating rats (see Data). Because many drugs are present in human milk and because of the potential for thrombocytopenia and anemia shown for Jakafi in human studies, discontinue breastfeeding during treatment with Jakafi and for two weeks after the final dose.

Data
Animal Data
Lactating rats were administered a single dose of [14C]-labeled ruxolitinib (30 mg/kg) on postnatal Day 10, after which plasma and milk samples were collected for up to 24 hours. The AUC for total radioactivity in milk was approximately 13-fold the maternal plasma AUC. Additional analysis showed the presence of ruxolitinib and several of its metabolites in milk, all at levels higher than those in maternal plasma.

8.4 Pediatric Use
The safety and effectiveness of Jakafi for treatment of myelofibrosis or polycythemia vera in pediatric patients have not been established.

Clinical studies of Jakafi in patients with steroid-refractory acute graft-versus-host disease (GVHD) have been established for treatment of children 12 years and older. Use of Jakafi in pediatric patients with steroid-refractory acute GVHD is supported by evidence from an adequate and well-controlled trial of Jakafi in adults (see Clinical Studies (14.3) and additional pharmacokinetic and safety data in pediatric patients.

Jakafi was evaluated in a single-arm, dose-escalation study (NCT01164163) in 27 pediatric patients with relapsed or refractory solid tumors (Cohort A) and 20 with leukemias or myeloproliferative neoplasms (Cohort B). The patients had a median age of 14 years (range, 2 to 21 years) and 11% were younger than 10 years. The dose levels tested were 5, 10, 15, 20, and 25 mg/m2 twice daily in 28-day cycles with up to 6 patients per dose group. Overall, 38 (81%) patients were treated with more than a single cycle of Jakafi, while 3, 1, 2, and 3 patients received 2, 3, 4, and more cycles, respectively. A protocol-defined maximal tolerated dose was not observed, but since few patients were treated for multiple cycles, tolerability with continued use was not assessed adequately to establish a recommended Phase 2 dose higher than the recommended dose for adults. The safety profile in children is similar to that seen in adults.

Juvenile Animal Toxicity Data
Administration of ruxolitinib to juvenile rats resulted in effects on growth and bone measures. When administered starting at postnatal day 7 (the equivalent of a human newborn) at doses of 1.5 to 75 mg/kg/day, evidence of fractures occurred at doses ≥ 30 mg/kg/day, and effects on body weight and other bone measures [e.g., bone mineral content, peripheral quantitative computed tomography, and x-ray analysis] occurred at doses ≥ 5 mg/kg/day. When administered starting at postnatal day 21 (the equivalent of a human 2-3 years of age) at doses of 5 to 60 mg/kg/day, effects on body weight and bone occurred at doses ≥ 15 mg/kg/day, which were considered adverse at 60 mg/kg/day. Males were more severely affected than females in all age groups, and effects were generally more severe when administration was initiated earlier in the postnatal period. These findings were observed at exposures that are at least 27% the clinical exposure at the maximum recommended dose of 25 mg twice daily.

8.5 Geriatric Use
Of the total number of patients with MF in clinical studies with Jakafi, 52% were 65 years and older, while 15% were 75 years and older. No overall differences in safety or effectiveness of Jakafi were observed between these patients and younger patients.

Clinical studies of Jakafi in patients with acute GVHD did not include sufficient numbers of subjects age 65 and over to determine whether they respond differently from younger subjects.

8.6 Renal Impairment
Total exposure of ruxolitinib and its active metabolites increased with moderate (Clcr 30 mL/min to 59 mL/min) and severe (Clcr 15 mL/min to 29 mL/min) renal impairment, and ESRD on dialysis [see Clinical Pharmacology (12.3)]. Reduce Jakafi dose as recommended [see Dosage and Administration (2.5)].

8.7 Hepatic Impairment
Exposure of ruxolitinib increased with mild (Child-Pugh A), moderate (Child-Pugh B) and severe (Child-Pugh C) hepatic impairment [see Clinical Pharmacology (12.3)]. Reduce Jakafi dose as recommended in patients with MF or PV and any hepatic impairment [see Dosage and Administration (2.5)]. Monitor blood counts more frequently for toxicity and consider 5 mg once daily for patients with Stage 3 or 4 liver GVHD [see Dosage and Administration (2.5) and Clinical Pharmacology (12.3)].

10 OVERDOSAGE
There is no known antidote for overdoses with Jakafi. Single doses up to 200 mg have been given with acceptable acute tolerability. Higher than recommended repeat doses are associated with increased myelosuppression including leukopenia, anemia and thrombocytopenia. Appropriate supportive treatment should be given.

Hemodialysis is not expected to enhance the elimination of Jakafi.

11 DESCRIPTION
Ruxolitinib phosphate is a kinase inhibitor with the chemical name (R)-3-(4-(7-pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpentanenitrile phosphate and a molecular weight of 404.36.

Ruxolitinib phosphate has the following structural formula:

```
Ruxolitinib phosphate is a white to off-white to light pink powder and is soluble in aqueous buffers across a pH range of 1 to 8.

Jakafi (ruxolitinib) Tablets are for oral administration. Each tablet contains ruxolitinib phosphate equivalent to 5 mg, 10 mg, 15 mg, 20 mg and 25 mg of ruxolitinib free base together with microcrystalline cellulose, lactose monohydrate, magnesium stearate, colloidal silicon dioxide, sodium starch glycolate, povidone and hydroxypropyl cellulose.
```

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action
Ruxolitinib, a kinase inhibitor, inhibits Janus Associated Kinases (JAKs) JAK1 and JAK2 which mediate the signaling of a number of cytokines and growth factors that are important for hematopoiesis and immune function. JAK signaling involves recruitment of STATs (signal transducers and activators of transcription) to cytokine receptors, activation and subsequent localization of STATs to the nucleus leading to modulation of gene expression.

MF and PV are myeloproliferative neoplasms (MPN) known to be associated with dysregulated JAK1 and JAK2 signaling. In a mouse model of Jak2V617F-positive MPN, oral administration of ruxolitinib prevents splenomegaly, preferentially decreased Jak2V617F mutant cells in the spleen and decreased circulating inflammatory cytokines (e.g., TNF-α, IL-6). JAK-STAT signaling pathways play a role in regulating the development, proliferation, and activation of several immune cell types important for GVHD pathogenesis. In a mouse model of acute GVHD, oral administration of ruxolitinib was associated with decreased expression of inflammatory cytokines in colon homogenates and reduced immune-cell infiltration in the colon.

12.2 Pharmacodynamics
Jakafi inhibits cytokine induced STAT3 phosphorylation in whole blood from patients with MF and PV. Jakafi administration resulted in maximal inhibition of STAT3 phosphorylation 2 hours after dosing which returned to near baseline by 10 hours in patients with MF and PV.

Cardiac Electrophysiology
At a dose of 1.25 to 10 times the highest recommended starting dosage, Jakafi does not prolong the QT interval to any clinically relevant extent.

12.3 Pharmacokinetics
Mean ruxolitinib maximal plasma concentration (Cmax) and AUC increased proportionally over a single dose range of 5 mg to 200 mg. Mean ruxolitinib Cmax ranged from 205 ng/ml to 7100 ng/ml and AUC ranged from 962 nm²/µm to 307000 nm²/µm over a single dose range of 5 mg to 200 mg.

Absorption
Ruxolitinib achieves Cmax within 1 hour to 2 hours post-dose. Oral absorption of ruxolitinib is estimated to be at least 95%.

Food Effect
No clinically relevant changes in the pharmacokinetics of ruxolitinib were observed upon administration of Jakafi with a high-fat, high-calorie meal (approximately 800 to 1000 calories of which 50% were derived from fat).

Distribution
The mean volume of distribution at steady-state is 72 L (coefficient of variation [CV] 29%) in patients with MF and 75 L (23%) in patients with PV.

Binding to plasma proteins is approximately 97%, mostly to albumin.

Elimination
The mean elimination half-life of ruxolitinib is approximately 3 hours and the mean half-life of ruxolitinib + metabolites is approximately 5.8 hours.

Ruxolitinib clearance (% coefficient of variation, CV) was 17.7 L/h in men with MF (39%).

Ruxolitinib clearance (%CV) was 12.7 L/h (42%) in patients with PV.

Ruxolitinib clearance (%CV) was 11.9 L/h (43%) in patients with acute GVHD.

Metabolism
Ruxolitinib is metabolized by CYP3A4 and to a lesser extent by CYP2C9.

Excretion
Following a single oral dose of radiolabeled ruxolitinib, elimination was predominately through metabolism with 74% of radioactivity excreted in urine and 22% excretion via feces. Unchanged drug accounted for less than 1% of the excreted total radioactivity.
Specific Populations
No clinically relevant differences in ruxolitinib pharmacokinetics were observed with regard to age, race, sex, or weight. No clinically relevant effect in ruxolitinib pharmacokinetics were observed with regards to any hepatic impairment (total bilirubin >ULN and any aspartate transaminase) in patients with acute GVHD.

Patients with Renal Impairment
Following oral administration of a single dose of Jakafi 25 mg, the total AUC of ruxolitinib and its active metabolites increased by 1.3-1.5-, and 1.9-fold in subjects with mild, moderate, and severe renal impairment, respectively, compared to that in subjects with normal renal function (CLcr > 90 mL/min). Also, the total AUC of ruxolitinib and its active metabolites increased by 1.6-fold in subjects with ESRD after dialysis compared to that in subjects with normal renal function (CLcr > 90 mL/min). The pharmacokinetics of ruxolitinib were similar in subjects with various degrees of renal impairment in those with normal renal function. The change in the pharmacodynamic marker, pSTAT3 inhibition, was consistent with the corresponding increase in metabolite exposure with renal impairment. Ruxolitinib is not removed by dialysis; however, the removal of some active metabolites by dialysis cannot be ruled out.

Patients with Hepatic Impairment
Following oral administration of a single dose of Jakafi 25 mg, the AUC of ruxolitinib increased in subjects with mild (Child-Pugh A) by 1.9-fold, moderate (Child-Pugh B) by 1.3-fold, and severe (Child-Pugh C) hepatic impairment by 1.7-fold compared to that in subjects with normal hepatic function. The change in the pharmacodynamic marker, pSTAT3 inhibition, was consistent with the corresponding increase in ruxolitinib exposure except in the severe hepatic impairment cohort where the pharmacodynamic activity was more prolonged in some subjects than expected based on plasma concentrations of ruxolitinib.

Drug Interactions
Flucanazole
Simulations suggest that fluconazole (a dual CYP3A4 and CYP2C9 inhibitor) increases steady state ruxolitinib AUC by approximately 100% to 300% following concomitant administration of 10 mg of Jakafi twice daily with 100 mg to 400 mg of fluconazole once daily [see Dosage and Administration (2.4) and Drug Interactions (7)].

Strong CYP3A4 inhibitors
Ketoconazole (a strong CYP3A4 inhibitor) increased ruxolitinib C\text{max} by 33% and AUC by 91% to 98% relative to placebo [see Drug Interactions (7)].

Moderate CYP3A4 inhibitors
Erythromycin (a moderate CYP3A4 inhibitor) increased ruxolitinib C\text{max} by 8% and AUC by 27% [see Drug Interactions (7)].

Strong CYP3A4 inducers
Rifampin (a strong CYP3A4 inducer) decreased ruxolitinib C\text{max} by 32% and AUC by 61%. The relative exposure to ruxolitinib’s active metabolites increased approximately 100% [see Drug Interactions (7)].

In vitro studies
Ruxolitinib and its M18 metabolite did not inhibit CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP3A4, CYP3A5, OAT1 or OAT3 transport systems at clinically relevant concentrations. Ruxolitinib is not a substrate for the P-gp transporter.

13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
Ruxolitinib was not carcinogenic in the 6-month Tg.rasH2 transgenic mouse model or in a 2-year carcinogenicity study in the rat. Ruxolitinib was not mutagenic in a bacterial mutagenicity assay (Ames test) or clastogenic in in vitro chromosomal aberration assay (cultured human peripheral blood lymphocytes) or in vivo in a rat bone marrow micronucleus assay.

In a fertility study, ruxolitinib was administered to male rats prior to and throughout mating and to female rats prior to mating and up to the implantation day (gestation day 7). Ruxolitinib had no effect on fertility or reproductive function in male or female rats at doses of 10, 30 or 60 mg/kg/day. However, in female rats doses of greater than or equal to 30 mg/kg/day resulted in increased post-implantation loss. The exposure (AUC) at the dose of 30 mg/kg/day is approximately 34% the clinical exposure at the maximum recommended dose of 25 mg twice daily.

14 CLINICAL STUDIES
14.1 Myelofibrosis
Two randomized Phase 3 studies (Studies 1 and 2) were conducted in patients with MF (either primary MF, post-polycythemia vera MF or post-essential thrombocythemia MF). In both studies, patients had palpable splenomegaly at least 5 cm below the costal margin and risk categories of intermediate 2 (2 prognostic factors) or high risk (3 or more prognostic factors) based on the International Working Group Consensus Criteria (IWG).

The starting dose of Jakafi was based on platelet count. Patients with a platelet count between 100 and 200 × 10\(^9\)/L were started on Jakafi 15 mg twice daily and patients with a platelet count greater than 200 × 10\(^9\)/L were started on Jakafi 20 mg twice daily. Doses were then individualized based upon tolerability and efficacy with maximum doses of 20 mg twice daily for patients with platelet counts between 100 to less than or equal to 125 × 10\(^9\)/L, of 10 mg twice daily for patients with platelet counts between 75 to less than or equal to 100 × 10\(^9\)/L, and of 5 mg twice daily for patients with platelet counts between 50 to less than or equal to 75 × 10\(^9\)/L.

Study 1
Study 1 (NCT00952289) was a double-blind, randomized, placebo-controlled study in 309 patients who were refractory to or were not candidates for available therapy. The median age was 68 years (range 40 to 91 years) with 61% of patients older than 65 years and 54% were male. Fifty percent (50%) of patients had primary MF, 31% had post-polycythemia vera MF and 18% had post-essential thrombocythemia MF. Twenty-one percent (21%) of patients had received blood cell transfusions within 8 weeks of enrollment in the study. The median hemoglobin count was 10.5 g/dL and the median platelet count was 251 × 10\(^9\)/L. Patients had a median palpable spleen length of 16 cm below the costal margin, with 81% having a spleen length 10 cm or greater below the costal margin. Patients had a median spleen volume as measured by magnetic resonance imaging (MRI) or computed tomography (CT) of 2595 cm\(^3\) (range 478 cm\(^3\) to 8881 cm\(^3\)). The upper limit of normal is approximately 300 cm\(^3\).

Patients were dosed with Jakafi or matching placebo. The primary efficacy endpoint was the proportion of patients achieving greater than or equal to a 35% reduction from baseline in spleen volume at Week 24 as measured by MRI or CT.

Secondary endpoints included duration of a 35% or greater reduction in spleen volume and proportion of patients with a 50% or greater reduction in Total Symptom Score from baseline to Week 24 as measured by the modified Myelofibrosis Symptom Assessment Form (MFSAF v2.0) diary.

Study 2
Study 2 (NCT00934544) was an open-label, randomized study in 219 patients. Patients were randomized 2:1 to Jakafi versus best available therapy. Best available therapy was selected by the investigator on a patient-by-patient basis. In the best available therapy arm, the medications received by more than 10% of patients were hydroxyurea (47%) and glucocorticoids (16%). The median age was 66 years (range 25 to 85 years) with 52% of patients older than 65 years and 57% were male. Fifty-three percent (53%) of patients had primary MF, 31% had post-polycythemia vera MF and 16% had post-essential thrombocythemia MF. Twenty-one percent (21%) of patients had red blood cell transfusions within 8 weeks of enrollment in the study. The median hemoglobin count was 10.4 g/dL and the median platelet count was 236 × 10\(^9\)/L. Patients had a median palpable spleen length of 15 cm below the costal margin, with 70% having a spleen length 10 cm or greater below the costal margin. Patients had a median spleen volume as measured by MRI or CT of 2381 cm\(^3\) (range 451 cm\(^3\) to 7765 cm\(^3\)).

The primary efficacy endpoint was the proportion of patients achieving 35% or greater reduction from baseline in spleen volume at Week 48 as measured by MRI or CT.

A secondary endpoint in Study 2 was the proportion of patients achieving a 35% or greater reduction in spleen volume as measured by MRI or CT from baseline to Week 24.

Study 1 and 2 Efficacy Results
Efficacy analyses of the primary endpoint in Studies 1 and 2 are presented in Table 17 below. A significantly larger proportion of patients in the Jakafi group achieved a 35% or greater reduction in spleen volume from baseline in both studies compared to placebo in Study 1 and best available therapy in Study 2. A similar proportion of patients in the Jakafi group achieved a 50% or greater reduction in palpable spleen length.

Table 17: Percent of Patients with Myelofibrosis Achieving 35% or Greater Reduction from Baseline in Spleen Volume at Week 24 in Study 1 and at Week 48 in Study 2 (Intent to Treat)

<table>
<thead>
<tr>
<th>Time Points</th>
<th>Study 1</th>
<th>Study 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jakafi (N=155)</td>
<td>Placebo (N=154)</td>
</tr>
<tr>
<td>Number (%) of Patients with Spleen Volume Reduction by 35% or More</td>
<td>65 (42)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>P-value</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Figure 1 shows the percent change from baseline in spleen volume for each patient at Week 24 (Jakafi N=139, placebo N=106) or the last evaluation prior to Week 24 for patients who did not complete 24 weeks of randomized treatment (Jakafi N=16, placebo N=47). One (1) patient (placebo) with a missing baseline spleen volume is not included.

Figure 1: Percent Change from Baseline in Spleen Volume at Week 24 or Last Observation for Each Patient (Study 1)

In Study 1, MF symptoms were a secondary endpoint and were measured using the modified Myelofibrosis Symptom Assessment Form (MFSAF v2.0) diary. The modified MFSAF is a daily diary capturing the core symptoms of MF (abdominal discomfort, pain under left ribs, night sweats, itching, bone/muscle pain and early satiety). Symptom scores ranged from 0 to 10 with representing symptoms “absent” and 10 representing “worst imaginable” symptoms. These scores were added to create the daily total score, which has a maximum of 60.
Table 18 presents assessments of Total Symptom Score from baseline to Week 24 in Study 1 including the proportion of patients with at least a 50% reduction (ie, improvement in symptoms). At baseline, the mean Total Symptom Score was 18.0 in the Jakafi group and 16.5 in the placebo group. A higher proportion of patients in the Jakafi group had a 50% or greater reduction in Total Symptom Score than in the placebo group, with a median time to response of less than 4 weeks.

Table 18: Improvement in Total Symptom Score in Patients with Myelofibrosis

<table>
<thead>
<tr>
<th>Group</th>
<th>Number (% of Patients with 50% or Greater Reduction in Total Symptom Score by Week 24)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jakafi (N=148)</td>
<td>68 (46)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Placebo (N=152)</td>
<td>8 (5)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 shows the percent change from baseline in Total Symptom Score for each patient at Week 24 (Jakafi N=129, placebo N=103) or the last evaluation on randomized therapy prior to Week 24 for patients who did not complete 24 weeks of randomized treatment (Jakafi N=16, placebo N=42). Results are excluded for 5 patients with a baseline Total Symptom Score of zero, 8 patients with missing baseline and 6 patients with insufficient post-baseline data.

Figure 4 and Figure 5 show Kaplan-Meier curves of overall survival at prospectively planned analyses 9 months in Study 1 and 17 months in Study 2.

Groups were eligible for crossover in both studies, and the median times to crossover were 14% of the patients in the Jakafi group versus 14% of the patients in the placebo group.

The median times to crossover were

- Jakafi group: 12 months
- Placebo group: 16 months

Individual score range = 0 to 10

An exploratory analysis of patients receiving Jakafi also showed improvement in fatigue-related symptoms (i.e., tiredness, exhaustion, mental tiredness, and lack of energy) and associated impacts on daily activities (i.e., activity limitations related to work, self-care, and exercise) as measured by the PROMIS® Fatigue 7-item short form total score at Week 24. Patients who achieved a reduction of 4.5 points or more from baseline to Week 24 in the PROMIS® Fatigue total score were considered to have achieved a fatigue response. Fatigue response was reported in 35% of patients in the Jakafi group versus 14% of the patients in the placebo group.

Overall survival was a secondary endpoint in both Study 1 and Study 2. Patients in the control groups were eligible for crossover in both studies, and the median times to crossover were 9 months in Study 1 and 17 months in Study 2.

Figure 4 and Figure 5 show Kaplan-Meier curves of overall survival at prospectively planned analyses after all patients remaining on study had completed 144 weeks on study.

14.2 Polycythemia Vera

Study 3 (NCT01243944) was a randomized, open-label, active-controlled Phase 3 study conducted in 222 patients with PV. Patients had been diagnosed with PV for at least 24 weeks, had an inadequate response to or were intolerant of hydroxyurea, required phlebotomy and exhibited splenomegaly. All patients were required to demonstrate hematocrit control between 40–45% prior to randomization. The age ranged from 33 to 90 years with 30% of patients over 65 years of age and 66% were male. Patients had a median spleen volume as measured by MR or CT of 1272 cm³ (range 254 cm³ to 5147 cm³) and median palpable spleen length below the costal margin was 7 cm.

Patients were randomized to Jakafi or best available therapy. The starting dose of Jakafi was 10 mg twice daily. Doses were then individualized based on tolerability and efficacy with a maximum dose of 25 mg twice daily. At Week 32, 98 patients were still on Jakafi with 8% receiving greater than 20 mg twice daily, 15% receiving 20 mg twice daily, 33% receiving 15 mg twice daily, 34% receiving 10 mg twice daily, and 10% receiving less than 10 mg twice daily. Best available therapy (BAT) was selected by the investigator on a patient-by-patient basis and included hydroxyurea (60%), interferon/pegylated interferon (12%), anagrelide (7%), pipobroman (2%), lenalidomide/thalidomide (5%), and observation (15%).

The primary endpoint was the proportion of subjects achieving a response at Week 32, with response defined as having achieved both hematocrit control (the absence of phlebotomy eligibility beginning at the Week 8 visit and continuing through Week 32) and spleen volume reduction (a greater than or equal to 35% reduction from baseline in spleen volume at Week 32). Phlebotomy eligibility was defined as a confirmed hematocrit greater than 45% that is at least 3 percentage points higher than the hematocrit obtained at baseline or a confirmed hematocrit greater than 48%, whichever was lower. Secondary endpoints included the proportion of all randomized subjects who achieved the primary endpoint and who maintained their response 48 weeks after randomization, and the proportion of subjects achieving complete hematological remission at Week 32 with complete hematological remission defined as achieving hematocrit control, platelet count less than or equal to 400 × 10⁹/L, and white blood cell count less than or equal to 10 × 10⁹/L.

Results of the primary and secondary endpoints are presented in Table 19. A significantly larger proportion of patients on the Jakafi arm achieved a response for the primary endpoint compared to best available therapy at Week 32 and maintained their response 48 weeks after randomization. A significantly larger proportion of patients on the Jakafi arm compared to best available therapy also achieved complete hematological remission at Week 32.
Incyte Corporation
1801 Augustine Cut-off
Wilmington, DE 19803

Jakafi is a registered trademark of Incyte. All rights reserved. U.S. Patent Nos. 7598257; 8415362; 8722693; 8822481; 8829013; 9079912; 9814722; 10014629
© 2011-2019 Incyte Corporation. All rights reserved.

Table 19: Percent of Patients with Polycythemia Vera Achieving the Primary and Key Secondary Endpoints in Study 3 (Intent to Treat)

<table>
<thead>
<tr>
<th>Number (%) of Patients Achieving a Primary Response at Week 32</th>
<th>Jakafi (N=110)</th>
<th>Best Available Therapy (N=112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (23%)</td>
<td>1 (<1%)</td>
<td></td>
</tr>
<tr>
<td>95% CI of the response rate (%)</td>
<td>(15%, 32%)</td>
<td>(0%, 5%)</td>
</tr>
<tr>
<td>Number (%) of Patients Achieving a Durable Hematological Remission at Week 32</td>
<td>22 (20%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>95% CI of the response rate (%)</td>
<td>(13%, 29%)</td>
<td>(0%, 5%)</td>
</tr>
<tr>
<td>Number (%) of Patients Achieving Complete Hematological Remission at Week 32</td>
<td>26 (24%)</td>
<td>9 (8%)</td>
</tr>
<tr>
<td>95% CI of the response rate (%)</td>
<td>(16%, 33%)</td>
<td>(4%, 15%)</td>
</tr>
</tbody>
</table>

Primary Response defined as having achieved both the absence of phlebotomy eligibility beginning at the Week 8 visit and continuing through Week 32 and a greater than or equal to 35% reduction from baseline in spleen volume at Week 32.

Additional analyses for Study 3 to assess durability of response were conducted at Week 80 only in the Jakafi arm. On this arm, 91 (83%) patients were still on treatment at the time of the Week 80 data cut-off. Of the 25 patients who achieved a primary response at Week 32, 19 (76% of the responders) maintained their response through Week 80, and of the 26 patients who achieved complete hematological remission at Week 32, 15 (58% of the responders) maintained their response through Week 80.

In an assessment of the individual components that make up the primary endpoint, there were 66 (60%) patients with hematocrit control on the Jakafi arm vs. 21 (19%) patients on best available therapy at Week 32; 51 (77% of hematocrit responders) patients on the Jakafi arm maintained hematocrit control through Week 80. There were 44 (40%) patients with spleen volume reduction from baseline greater than or equal to 35% on the Jakafi arm vs. 1 (<1%) patient on best available therapy at Week 32; 43 (98% of spleen volume reduction responders) patients on the Jakafi arm maintained spleen volume reduction through Week 80.

14. Acute Graft Versus Host Disease

Study 4 (NCT02983307) was an open-label, single-arm, multicenter study of Jakafi for treatment of patients with steroid-refractory acute GvHD Grades 2 to 4 (Mount Sinai Acute GvHD International Consortium (MAGIC) criteria) occurring after allogeneic hematopoietic stem cell transplantation. Jakafi was administered at 5 mg twice daily, and the dose could be increased to 10 mg twice daily after 3 days in the absence of toxicity.

There were 49 patients with acute GVHD refractory to steroids alone. These patients had a median age of 57 years (range, 18-72 years), 47% were male, 92% were Caucasian, and 14% were Hispanic. At baseline, acute GVHD was Grade 2 in 27%, Grade 3 in 55%, and Grade 4 in 18%; 84% had visceral GVHD; the median MAGIC biomarker score was 0.47 (range, 0.10-0.92); and the median ST2 level was 334 mcg/L (range, 55-1286 mcg/L). The median duration of prior corticosteroid exposure at baseline was 15 days (range: 3 – 106 days). The efficacy of Jakafi was based on Day-8 response rate (IRR) (complete response, very good partial response or partial response by Center for International Blood and Marrow Transplant Research (CIBMTR) criteria) and the duration of response. The IRR results are presented in Table 20; Day-8 ORR was 100% for Grade 2 GVHD, 40.7% for Grade 3 GVHD, and 44.4% for Grade 4 GVHD. The median duration of response, calculated from Day-28 response to progression, was 16 days (95% CI 9, 83). Also for the Day-28 responders, the median duration of response, calculated from Day-28 response to progression, was 16 days (95% CI 9, 83). For the Day-28 responders, the median duration of response, calculated from Day-28 response to progression, was 16 days (95% CI 9, 83). For the Day-28 responders, the median duration of response, calculated from Day-28 response to progression, was 16 days (95% CI 9, 83). For the Day-28 responders, the median duration of response, calculated from Day-28 response to progression, was 16 days (95% CI 9, 83).

Table 20: Day-28 Overall Response Rate for Patients with Steroid-Refractory Acute GvHD in Study 4

<table>
<thead>
<tr>
<th>Refractory to Steroids Alone (N=49)</th>
<th>Complete Response</th>
<th>Very Good Partial Response</th>
<th>Partial Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response (%) (95% CI)</td>
<td>28 (57.1%) (42.2, 71.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Response</td>
<td>15 (30.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Good Partial Response</td>
<td>2 (4.1%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Response</td>
<td>11 (22.4%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is Jakafi?

Jakafi is a prescription medicine used to treat:

- adults with certain types of myelofibrosis (MF).
- adults with polycythemia vera (PV) who have already taken a medicine called hydroxyurea and it did not work well enough or they could not tolerate it.
- adults and children 12 years of age and older with acute graft versus host disease (GVHD) who have taken corticosteroids and they did not work well enough.

It is not known if Jakafi is safe or effective in children for treatment of myelofibrosis or polycythemia vera.

Before taking Jakafi, tell your healthcare provider about all of your medical conditions, including if you:

- have an infection.
- have or had tuberculosis (TB), or have been in close contact with someone who has TB.
- have or had hepatitis B.
- have or have had liver problems.
- have or have had kidney problems or are on dialysis. If you are on dialysis, Jakafi should be taken after your dialysis.
- have high level of fat in your blood (high blood cholesterol or triglycerides).
- have had skin cancer in the past.
- are pregnant or plan to become pregnant. It is not known if Jakafi will harm your unborn baby.
- are breastfeeding or plan to breastfeed. It is not known if Jakafi passes into your breast milk. Do not breastfeed during treatment with Jakafi and for 2 weeks after the final dose.

Tell your healthcare provider about all the medicines you take, including prescription and over-the-counter medicines, vitamins and herbal supplements. Taking Jakafi with certain other medicines may affect how Jakafi works. Know the medicines you take. Keep a list of them to show your healthcare provider and pharmacist when you get a new medicine.

How should I take Jakafi?

- Take Jakafi exactly as your healthcare provider tells you.
- Do not change your dose or stop taking Jakafi without first talking to your healthcare provider.
- You can take Jakafi with or without food.
- Jakafi may also be given through certain nasogastric tubes.
 - Tell your healthcare provider if you cannot take Jakafi by mouth. Your healthcare provider will decide if you can take Jakafi through a nasogastric tube.
 - Ask your healthcare provider to give you specific instruction on how to properly take Jakafi through a nasogastric tube.
- If you miss a dose of Jakafi, take your next dose at your regular time. Do not take 2 doses at the same time.
- If you take too much Jakafi call your healthcare provider or go to the nearest hospital emergency room right away.
- You will have regular blood tests during your treatment with Jakafi. Your healthcare provider may change your dose of Jakafi or stop your treatment based on the results of your blood tests.

What are the possible side effects of Jakafi?

Jakafi can cause serious side effects including:

- **Low blood cell counts.** Jakafi may cause low platelet counts (thrombocytopenia), low red blood cell counts (anemia), and low white blood cell counts (neutropenia). If you develop bleeding, stop Jakafi and call your healthcare provider. Your healthcare provider will do a blood test to check your blood cell counts before you start Jakafi and regularly during your treatment with Jakafi. Tell your healthcare provider right away if you develop or have worsening of any of these symptoms:
 - unusual bleeding
 - bruising
 - tiredness
 - shortness of breath
 - fever
Infection. You may be at risk for developing a serious infection during treatment with Jakafi. Tell your healthcare provider if you develop any of the following symptoms of infection:

- chills
- aches
- fever
- nausea
- vomiting
- weakness
- painful skin rash or blisters

Skin cancers. Some people who take Jakafi have developed certain types of non-melanoma skin cancers. Tell your healthcare provider if you develop any new or changing skin lesions during treatment with Jakafi.

Cholesterol increases. You may have changes in your blood cholesterol levels. Your healthcare provider will do blood tests to check your cholesterol levels during treatment with Jakafi.

The most common side effects of Jakafi in adults with certain types of MF and PV include:

- low platelet counts (thrombocytopenia)
- low red blood cell counts (anemia)
- bruising
- dizziness
- headache

The most common side effects of Jakafi in people with acute graft versus host disease (GVHD) include:

- low red blood cell counts (anemia)
- low platelet counts (thrombocytopenia)
- low white blood cell counts (neutropenia)
- infections
- fluid retention

These are not all the possible side effects of Jakafi.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

You may also report side effects to Incyte Corporation at 1-855-463-3463.

How should I store Jakafi?

- Store Jakafi at room temperature 68°F to 77°F (20°C to 25°C).

Keep Jakafi and all medicines out of the reach of children.

General information about the safe and effective use of Jakafi.

Medicines are sometimes prescribed for purposes other than those listed in Patient Information. Do not use Jakafi for a condition for which it is not prescribed. Do not give Jakafi to other people, even if they have the same symptoms you have. It may harm them. You can ask your pharmacist or healthcare provider for information that is written for healthcare professionals.

What are the ingredients in Jakafi?

Active ingredient: ruxolitinib phosphate

Inactive ingredients: microcrystalline cellulose, lactose monohydrate, magnesium stearate, colloidal silicon dioxide, sodium starch glycolate, povidone and hydroxypropyl cellulose

Manufactured for: Incyte Corporation, 1801 Augustine Cut-off, Wilmington, DE 19803

Jakafi is a registered trademark of Incyte. All rights reserved.

U.S. Patent Nos. 7598257; 8415362; 8722693; 8822481; 8829013; 9079912; 9814722; 10016429
© 2011-2019 Incyte Corporation. All rights reserved. PLR-JAK-00014

For more information call 1-855-463-3463 or go to www.jakafi.com.

Incyte

This Patient Information has been approved by the U.S. Food and Drug Administration. Revised: May 2019